- Keygenerator.getinstance Algorithm Generate Key Generator
- Keygenerator.getinstance Algorithm Generate Key File
- Keygenerator.getinstance Algorithm Generate Key Download
- Keygenerator.getinstance Algorithm Generate Key Code
Key generators are constructed using one of the getInstance class methods of this class. GetInstance method of KeyGenerator takes parameter name of algorithm and Returns a KeyGenerator object that generates secret keys for the specified algorithm. This method traverses the list of registered security Providers, starting with the most preferred.
Keygenerator.getinstance Algorithm Generate Key Generator
Key generators are constructed using one of the getInstance
class methods of this class.
KeyGenerator objects are reusable, i.e., after a key has been generated, the same KeyGenerator object can be re-used to generate further keys.
There are two ways to generate a key: in an algorithm-independent manner, and in an algorithm-specific manner. The only difference between the two is the initialization of the object:
Keygenerator.getinstance Algorithm Generate Key File
- Algorithm-Independent Initialization
All key generators share the concepts of a keysize and a source of randomness. There is an
init
method in this KeyGenerator class that takes these two universally shared types of arguments. There is also one that takes just akeysize
argument, and uses the SecureRandom implementation of the highest-priority installed provider as the source of randomness (or a system-provided source of randomness if none of the installed providers supply a SecureRandom implementation), and one that takes just a source of randomness.Since no other parameters are specified when you call the above algorithm-independent
init
methods, it is up to the provider what to do about the algorithm-specific parameters (if any) to be associated with each of the keys. - Algorithm-Specific Initialization
For situations where a set of algorithm-specific parameters already exists, there are two
init
methods that have anAlgorithmParameterSpec
argument. One also has aSecureRandom
argument, while the other uses the SecureRandom implementation of the highest-priority installed provider as the source of randomness (or a system-provided source of randomness if none of the installed providers supply a SecureRandom implementation).
In case the client does not explicitly initialize the KeyGenerator (via a call to an init
method), each provider must supply (and document) a default initialization. See the Keysize Restriction sections of the JDK Providers document for information on the KeyGenerator defaults used by JDK providers. However, note that defaults may vary across different providers. Additionally, the default value for a provider may change in a future version. Therefore, it is recommended to explicitly initialize the KeyGenerator instead of relying on provider-specific defaults.
Every implementation of the Java platform is required to support the following standard KeyGenerator
algorithms with the keysizes in parentheses:
AES
(128)DES
(56)DESede
(168)HmacSHA1
HmacSHA256